GET THE APP

Fabrication and Photovoltaic Characteristics of Alizarin Dye Based Dsscs | Abstract

Der Pharma Chemica
Journal for Medicinal Chemistry, Pharmaceutical Chemistry, Pharmaceutical Sciences and Computational Chemistry

ISSN: 0975-413X
All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission Systemof respective journal.

Abstract

Fabrication and Photovoltaic Characteristics of Alizarin Dye Based Dsscs

Author(s): Raman Kumar Saini, Pratap Singh Kadyan, Jasbir Singh, Shri Bhagwan and Devender Singh*

Nano-TiO2 layer was used as photoanode and redox electrolyte couple (I-/I3-) of inorganic (KI) and organic R4N+I- (quaternary ammonium iodide salts) with iodine (I2) were applied in acetonitrile solvent. Dye sensitized solar cells were fabricated with alizarin dye as sensitizer on FTO (fluorine-doped tin oxide) coated transparent fused silica substrate. The photovoltaic properties of DSSCs with alizarin dye investigated in expressions of short circuit current (Jsc), open-circuit voltage (Voc), fill factor (FF) and efficiency (ɳ) using J-V curve. The absorption spectrum of Alizarin dye showed peaks at 264 nm due to the π→π* transitions and 425 nm due to n→π* transition. The alizarin dye showed good thermal stability up to∼270âÃ?â??Ã?Ë?Ã?â??Ã?Ë?C temperature. The maximum efficiency was found excellent in DSSC with (CH3CH2CH2)4NI-I2 redox couple electrolyte. The role of alizarin dye as sensitizer has been analyzed in fabricated DSSCs and obtained photovoltaic properties could be used as light harvesting material.


Full-Text PDF

Select your language of interest to view the total content in your interested language

30+ Million Readerbase
SCImago Journal & Country Rank
Google Scholar citation report
Citations : 15261

Der Pharma Chemica received 15261 citations as per Google Scholar report

Der Pharma Chemica peer review process verified at publons
Der Pharma Chemica- Journals on pharmaceutical chemistry