Carbon-based adsorbent from the hardwood of locust bean and maize husks were assessed for their potential in reducing Cr6+ ions in contaminated industrial effluent waters. Two samples of activated carbon (AC) were successfully prepared by a simultaneous two step carbonization and activation processes using maize husk (Zea mays) and locust bean (Entada africana). Chemical activation was achieved by first impregnating the prepared raw materials with 60 %(v/v) and 80 %(v/v) H3PO4 acid and thereafter subjected to carbonization at 550 oC and 950 oC for a period of 1½ hr and 4 hr, respectively. The ACs were characterized and isotherm plot was produced for the adsorption of methylene blue (MB) from which the adsorption capacity was calculated. The effect of pH, adsorbent dosage and time were studied. The results showed large surface area (115.69 to 143.74 m2/g), as suggested by the SEM result, which indicates the possibility of high adsorption of Cr6+ at pH 2 – 6, and that was due largely to HCrO4- than by any other Cr6+ species. The pseudo-first order kinetic best described the data obtained and so suggest physisorption mechanism involved in the adsorption of Cr6+ unto LBAC and MHAC. The relatively high percentage ion removal by LBAC and MHAC suggests that they can be used as inexpensive, efficient and environmentally friendly alternatives in the cost-effective removal of Cr6+ from industrial wastewaters when these modification conditions are used.
Select your language of interest to view the total content in your interested language
Der Pharma Chemica received 15261 citations as per Google Scholar report